Archive for the ‘Nano’ Category

Regulate air flow with Arduino

Tuesday, August 29th, 2017

Blow guns can be very helpful around your workshop, but sometimes you want a subtle shot of air instead of a full blast. There are several ways to take this on, but YouTuber “MBcreates” decided on a novel method using an Arduino Nano for control.

In his setup, a stepper is used to turn a screw as a linear actuator, pushing an intermediate blow gun’s trigger at progressively more aggressive intervals. This effectively regulates the air flow going into the handheld blow gun, allowing for a more subtle burst of air when needed.

Simple is often better. So I grabbed an old blow gun and used this a valve. The Arduino Digital Air Pressure Regulator uses a NEMA 17 stepper motor to press the lever of the blow gun. A micro end switch was placed against the lever. When the Arduino Nano goes through the setup, the stepper hits the end switch, now the program knows the exact position of the stepper.

The video seen here features some very clever build techniques, and it really turned out spectacular, especially considering it was MBcreates’ first Arduino project! (more…)

Fling discs with a brushless motor and an Arduino

Sunday, August 27th, 2017

YouTuber “austiwawa,” apparently not satisfied with other methods of causing mayhem in his garage and backyard, has come up with an innovative disc shooter.

His homemade device uses a brushless motor controlled by an Arduino Nano and an ESC to pull a vacuum belt at high speeds. A clear plastic tube on top holds a stack of about 27 3D-printed discs. At the press of a button, they are then fed one by one onto the belt surface by another motor, which accelerates the disc to ejection velocity and out the “muzzle.” There’s also a potentiometer that allows him to adjust the fire rate.

Although it appears to work quite well, destroying items like an apple and eggs, austiwawa notes that this is only a prototype, and plans to make a fully 3D-printed version in the future. At that point, he’ll release the Arduino code and STL files, making it easy for others to duplicate! (more…)

Check the time on this large and inexpensive “Titan Clock”

Friday, August 25th, 2017

When you, perhaps after being late for an important event one too many times, decide to build a wall clock, there are many DIY options from which to choose. But none may be as massive or unique as the aptly named “Titan Clock.”

To justify this particular design, hacker “ProtheanSoft” lists several of its advantages, such as its large size, energy efficiency (runs on a smartphone charger), thinness (only 18mm thick with casing), and of course, affordability.

The Titan Clock—which can be assembled for less than $50—consists of RGB LEDs, inexpensive craft materials like foamcore board, acrylic and aluminum sheets, as well as recycled components including the diffuser from a broken LCD monitor or TV to generate a uniform glow for each segment.  (more…)

Levitate liquids and other tiny objects with this DIY device

Thursday, August 17th, 2017

If you’ve ever wished you could levitate tiny drops of liquid, small solids, or insects in mid-air, new research has you covered. That’s because Asier Marzo, Adrian Barnes, and Bruce W. Drinkwater have developed a 3D-printed, Arduino Nano-controlled acoustic levitator.

Their device uses two arrays of 36 sonic transducers in a concave pattern, which face each other in order to suspend objects like Styrofoam, water, coffee and paper in between. Several items can even be trapped at the same time, and liquid is inserted into the “levitation zone” via a syringe.

The principle is similar to the vibration you feel when next to a large speaker, but in this case, the homemade levitator employs ultrasonic waves to push particles without causing any damage to humans. (more…)

Maker creates his own coilgun using an Arduino Nano

Tuesday, August 15th, 2017

If you suppose that electromagnetically-propelled projectiles are strictly the purview of well-funded government research labs, think again! Using two sets of coils wrapped around custom 3D-printed base structures and an Arduino Nano for control, YouTuber “Gyro” created his own coilgun capable of propelling steel fast enough to dent a piece of wood.

When fired, a photodiode at the end of each electromagnet coil sends a signal to the Arduino. This, in turn, shuts off the coil, allowing it freely escape the barrel. (more…)

Build an arcade-style hoops game with Arduino and LEGO

Friday, August 11th, 2017

You may be familiar with “Pop-A-Shot” at arcades and amusement parks, which allows you to shoot baskets at a hoop for fun and prizes. Maker Cory Guynn, apparently unsatisfied with not having one of these at home, decided to duplicate the game with the “Pop o Shop.”

In this version, an ultrasonic sensor in the hoop tells an Arduino Nano when a shot has been registered, while two 7-segment displays inside of a LEGO scoreboard show the current count, time remaining, and high score. There is also an RGB LED that turns green after every made basket and changes color with a new top score. (more…)

Make your own Operation-style board game with Arduino

Monday, July 24th, 2017

Usually, when you think of doing “surgery” on electronics, it’s to replace a component, or maybe modifying an appliance into something different. In this case, an Arduino Nano powers Hurry, Doctor!, an updated version of the board game classic Operation meant as a middle school STEM exercise.

This game, of which creator “TrevorB23” gives an extensive explanation in his Instructables write-up, features a LEGO minifigure with cutouts inside that house obstructions such as a “mental block” and “funny bone.” As with the original, the objective is to remove these foreign bodies without touching the sides, constructed here with conductive aluminum foil tape in order to signal the Nano. (more…)

Binge-watch and burn calories with the Arduino-powered Cycflix

Thursday, July 13th, 2017

As entertaining as watching Netflix may be, you’re not burning a lot of calories while binging on your favorite shows. In order to do both at the same time, hacker “Roboro” modded a stationary exercise bike to stop streaming if he’s not maintaining his fitness goals.

Bicycle speed is derived from the signal that’s normally sent to the built-in display. He uses an Arduino Nano to hijack the square wave, and sends this info to the streaming computer serially via USB. (more…)

Synth Bike 3.0 produces tunes with 12 Arduino Nanos

Monday, June 26th, 2017

After building a bicycle that could travel across town while making music, Sam Battle now taken things in a different direction. Synth Bike 3.0, which will be on display at the Science Center Dublin until September, is set up on a training fixture so that you can pedal it indoors rain or shine. This version also features a simplified control panel on the handlebars, allowing it to be played by anyone at a tempo controlled by the rear wheel’s speed.

Battle’s YouTube channel is named “LOOK MUM NO COMPUTER” however, this apparently doesn’t count microcontrollers. Hidden in the externally clean-looking handlebar groove box is a total of 12 Arduino Nano boards, along with a maze of wiring, strip circuit boards, frequency central PCBs, a SparkFun WAV trigger, and some other electronics. There’s even built-in speakers on the sides to output the created sounds.

Be sure to check out Synth Bike 3.0’s New Atlas write-up for more info on the project. (more…)

Face tracking with Arduino and Android

Tuesday, June 20th, 2017

Computer vision has traditionally relied on an assortment of rather involved components. On the other hand, everything you need to do this complicated task is readily available on an Android phone. The clever setup seen in the video here uses a smartphone to capture and process images, then send out a signal over Bluetooth to tell which way the device needs to be adjusted in order to focus on a nearby face.

An HC-05 Bluetooth module receives this signal and passes it to two servo motors via an Arduino Nano, moving the phone left/right and up/down.

You can find the Arduino code for this project on CircuitDigest, and the Android Processing code can be downloaded there as a compressed folder. (more…)