Archive for the ‘accelerometer’ Category

Becoming Alina with a couple of interactive Gauntlets

Monday, November 3rd, 2014

hallow-lilypad

We’ve been amazed by the great projects coming up the week before Halloween on Twitter and Gplus community and still being submitted to our blog.

Leah Libresco published an Instructables about a pair of interactive gauntlets made with Arduino Lilypad: (more…)

Space experiments for everyone: the ArduSat project

Tuesday, June 19th, 2012

ArduSat, which stands for “Arduino satellite”, is a recently kickstarted project that aims at developing an open platform usable to emulate space scientists:

Once launched, the ArduSat will be the first open platform allowing the general public to design and run their own space-based applications, games and experiments, steer the onboard cameras to take pictures on-demand, and even broadcast personalized messages back to Earth.

ArduSat will be equipped with several sensors (such as cameras, gyros, accelerometers, GPS and more) packed inside a small cube (the side will be approximately 10 cm long) that can be accessed through a set of Arduinos.

Once in orbit, the ArduSat will be accessible from the ground to flash the required firmware for the experiments and for getting back all the collected information. People interested in performing space experiments will have access to a ground replica of ArduSat explotable to test and debug their code before the actual deployment.

The project is very ambitious, and it is expected that such an open accessible space platform will have a considerable impact on how simple space experiments will be carried out in the forthcoming years, in the case of fundraising success.

You may find the Kickstarter page of the project here.

[Via: Hack A Day and Kickstarter]

Some advances in aerial vehicles: bat-inspired smart wings

Wednesday, June 6th, 2012

Researchers from Centro de Automática y Robótica (Universidad Politécnica de Madrid) and from Brown University carried out a very deep research about the specific behavior of bat flight, whose ultimate goal is to replicate the capabilities of bat’s wings by means of an ad-hoc designed micro aerial vehicle (MAV).

From the home page of the project:

[...] this research is oriented towards the development of a biological inspired bat robot platform, that allows to reproduce the amazing maneuverability of these flying mammals. The highly maneuverability is achieved by reproducing the flapping and morphing capabilities of their wing-skeleton structure. This structure is composed by several joints and a membrane that generates the required lift forces to fly.

To mimmic the muscular system that moves the joints of the wing-bones, Shape Memory Alloys (SMA) NiTi wires are used as artificial-muscles. Several challenges in controlling this SMA-based actuation system are regarded in this research.

(more…)

Arduino based Quadrotor on a PCB

Wednesday, June 6th, 2012

There are many Quadrotor Projects out there. But, they require a hobbyist to deal with the Frame Designing (Mechanical), a bit of Microcontroller knowledge as well as dealing with the Motor Control (Power Electronics). You may purchase a commercial Radio and a readymade Kit for flying. But, to Do-It-Yourself, is an achievement in itself.

4pcb Quad

Here is a picture of a Quadrotor designed by Shane Colton using Arduino Pro mini as its flying brain. Shane is a Ph.D Student at Massachusetts Institute of Technology. On being asked about the Project, he replied:

I heard about Arduino some time in 2007/2008 and have used it for a few projects since then. I built the quadrotor for fun / hobby (not related to research). I wanted to build my own (quadrotor) from scratch because I could integrate all the parts onto a single circuit board, and because I like designing the control system myself.

(more…)

MAKEmatics – Mathematics for Makers

Wednesday, May 9th, 2012

Makers need to familiarize themselves with the core concepts and the theory involved in creating applications such as Motion Sensing and Face Tracking. As the technology is churning out new hardware day and night, DIYers need to work hard to keep up and always be in touch with the latest technology around them.

For example, anyone working with Accelerometers/ Gyroscopes or Inertial Measurement Units needs to understand the theory of Vectors, Force, Gravity and be able to work out complex mathematical problems. They may easily get an Arduino Board and an Accelerometer Breakout or an IMU Board and use a library instead of writing their own code but to truly understand the theory behind it; how the device actually works, is not for the faint of heart.

 

One such problem is the Face Tracking Application. Unless you know the real theory behind how the Algorithm actually works, you can only wonder about that robot which follows its master. Greg Borenstein had an idea of creating a website dedicated to this issue. Makematics – Math for Makers.

 

In an introductory post, Greg writes:

” I hope to show that a normal programmer with no special academic training can grapple with these areas of research and find a way in to understanding them. And as I go I aim to create material that will help others do the same. If I can do it, there’s no reason you can’t.”

More and more people should step forward and create or compile a good amount of research data to help fellow makers and DIYers in solving complex mathematical problems.

Ball of Dub Keeps Audio in Your Hands

Tuesday, November 1st, 2011

Ball of Dub from LUSTlab on Vimeo.

Accelerometer to Renoise via OSC  to control trippy and dubby sounds.

[Lizzie] from LustLab sent in her Ball of Dub that turns a few accelerometer and a digital audio workstation and turns everything into an aural experience of wubs and dubs. The Ball of Dub can turn just about anything into dubstep, and does so with a fairly interesting user interface.

There isn’t a build log for the Ball of Dub, but  the folks at LustLab did send in a basic overview of her project. Inside the ball, there’s a Razor IMU from Sparkfun that is attached to the ever-popular XBee wireless transceiver. A tiny program on an Arduino calibrates the gyroscope and accelerometer and sends that data to the DAW at 50Hz.

The host computer is running Renoise, a very popular tracker that can accept MIDI and OSC input. A Processing app parses the ball spin, free fall and impact, averages them over a period of time, and pipes that into the OSC input of Renoise. In [Lizzie]‘s video, the ball spin is sent to a low-pass filter on the baseline track, and the average impact is applied to the vocal track.

via [HackADay] source [LustLab Tumblr] special demo video for the few skeptical comments on HackADay

Samsa II, The Hexapod

Tuesday, March 29th, 2011

[pabloxid] shared an Hexapod project on the forum based on an Arduino MEGA 1280 and 18 Dynamixel AX-12 motors:

SAMSA is based on the Wiring board, with an ATmega128 microcontroller, and SAMSA II on the Arduino Mega, with an ATmega1280. Both are pretty similar, tough the ATmega1280 has 8 KB SRAM, twice the ATmega128. For SAMSA II the Arduino IDE was not used. The software was written directly in C++, using some libraries from both Arduino and Wiring.

SAMSA II has also two additional microcontrollers. One is an old Arduino Mini (ATmega168) located in the head, tasked with handling the sensors. The other is an ATmega8 and is integrated in the display. The firmware in the display was replaced with another one, freeing the main microcontroller from handling the display pixel by pixel, storing the frame buffer, etc.

The head’s microcontroller is responsible for sampling, filtering and processing sensor’s data. The data from the Sharp distance sensor and the lateral IR sensors are combined in a single “super smart distance sensor”. This microcontroller also decodes the data coming from the 38 KHz IR receiver, used for the Remote Control.

These two additional microcontrollers further reduce the load on the main microcontroller, allowing for more sophisticated behaviours.

(more…)

Balancing robot for dummies

Monday, September 20th, 2010

 

Arduino forum [kas] user has started a very useful thread about balancing robots:

Disclaimer:
I invented nothing
I read A LOT and went by trial and error

[kas] is a robot addicted and reported some past experieces in the field of two wheels balanced robots.

We all wait for the “Balancing Robot For Dummies” guide to continue on the Forum.

Goor work Kas!

[Arduino Forum Thread]

 

 

Balancing robot for dummies

Monday, September 20th, 2010

 

Arduino forum [kas] user has started a very useful thread about balancing robots:

Disclaimer:
I invented nothing
I read A LOT and went by trial and error

[kas] is a robot addicted and reported some past experieces in the field of two wheels balanced robots.

We all wait for the “Balancing Robot For Dummies” guide to continue on the Forum.

Goor work Kas!

[Arduino Forum Thread]

 

 

Please enter a valid email to subscribe

Confirm your email address

We need to confirm your email address.
To complete the subscription, please click the link in the email we just sent you.

Thank you for subscribing!

Arduino
via Egeo 16
Torino, 10131
Italy