In the Earth’s atmosphere, a drone can adjust its heading by varying the speed of the propellers, and thus the thrust output of each. If you wanted to land something on a lunar surface, or maneuver a spaceship, the lack of atmosphere means a different technique must be used.
While not going to space (yet), Tom Stanton decided to create a demonstrator for this technique, similar to how the manned Lunar Landing Research Vehicle (LLRV) operated in the 1960s and ’70s. Stanton’s device employs a central electric ducted fan (EDF) to hold the craft up, while three compressed air nozzles provide most of its directional control.
In action, an RC flight controller’s signals are modified by an Arduino Nano to accommodate this unique control scheme, pulsing out bursts of air via three solenoid valves.
Check out the build and experimental process in the video below, culminating with untethered tests starting at around 17:30.
We care about the privacy and personal data of our users.
To continue, please give us your consent:
Please confirm that you have read the privacy policy
Thank you for subscribing!
Curious to learn more?
Are you also a teacher, student, or professional that loves using Arduino in your day-to-day activities?
Then keep up-to-date with either our STEM or Professional monthly newsletters.
Arduino weekly newsletter (already subscribed)
Educators can benefit from the ever growing tech that shapes our environment through fun cool projects.
Why not awe your boss with highly innovative ways to help keep your enterprise connected at no extra cost?
Arduino Survey
We'd like to get to know you little better.
Please help us improve by answering this super short optional survey.