Archive for the ‘sensors’ Category

Schools projects with Arduino: Flow Meter

Tuesday, July 10th, 2012

The

Loccioni Group, is an italian company that sponsors every year a project internship entitled “Classe Virtuale”, dedicated to young students coming from local technical schools.

This year, “Classe Virtuale 2012″ has been composed by 27 students with different backgrounds, selected among 120 candidates. After a stating training period, during the three-weeks internship the team worked on a very nice Arduino-based project: Flow Meter.

Here you may find a brief interview we had with Daniele Caschera, one of the components of “Classe Virtuale 2012″, about Flow Meter and on how Arduino helped in its design.

(more…)

Space experiments for everyone: the ArduSat project

Tuesday, June 19th, 2012

ArduSat, which stands for “Arduino satellite”, is a recently kickstarted project that aims at developing an open platform usable to emulate space scientists:

Once launched, the ArduSat will be the first open platform allowing the general public to design and run their own space-based applications, games and experiments, steer the onboard cameras to take pictures on-demand, and even broadcast personalized messages back to Earth.

ArduSat will be equipped with several sensors (such as cameras, gyros, accelerometers, GPS and more) packed inside a small cube (the side will be approximately 10 cm long) that can be accessed through a set of Arduinos.

Once in orbit, the ArduSat will be accessible from the ground to flash the required firmware for the experiments and for getting back all the collected information. People interested in performing space experiments will have access to a ground replica of ArduSat explotable to test and debug their code before the actual deployment.

The project is very ambitious, and it is expected that such an open accessible space platform will have a considerable impact on how simple space experiments will be carried out in the forthcoming years, in the case of fundraising success.

You may find the Kickstarter page of the project here.

[Via: Hack A Day and Kickstarter]

Quick tutorial: current sensing for DC motors

Friday, June 15th, 2012

On her blog, Dustyn Roberts presents her own experience on current sensing for controlling DC electric motors with an Arduino board and an Arduino Motor Shield. This shield, based on a L298 H-bridge, provides two current sensing pins to the user, which can be used to measure the instantaneous current absorpion by each H-bridge. After some trials, Dustyn managed to have a quite clear picture of the absorption behavior of the DC motor:

Sample code and updates can be found on Dustyn’s blog.

[Via: Dustyn's blog]

Some advances in aerial vehicles: bat-inspired smart wings

Wednesday, June 6th, 2012

Researchers from Centro de Automática y Robótica (Universidad Politécnica de Madrid) and from Brown University carried out a very deep research about the specific behavior of bat flight, whose ultimate goal is to replicate the capabilities of bat’s wings by means of an ad-hoc designed micro aerial vehicle (MAV).

From the home page of the project:

[...] this research is oriented towards the development of a biological inspired bat robot platform, that allows to reproduce the amazing maneuverability of these flying mammals. The highly maneuverability is achieved by reproducing the flapping and morphing capabilities of their wing-skeleton structure. This structure is composed by several joints and a membrane that generates the required lift forces to fly.

To mimmic the muscular system that moves the joints of the wing-bones, Shape Memory Alloys (SMA) NiTi wires are used as artificial-muscles. Several challenges in controlling this SMA-based actuation system are regarded in this research.

(more…)

Arduino based Quadrotor on a PCB

Wednesday, June 6th, 2012

There are many Quadrotor Projects out there. But, they require a hobbyist to deal with the Frame Designing (Mechanical), a bit of Microcontroller knowledge as well as dealing with the Motor Control (Power Electronics). You may purchase a commercial Radio and a readymade Kit for flying. But, to Do-It-Yourself, is an achievement in itself.

4pcb Quad

Here is a picture of a Quadrotor designed by Shane Colton using Arduino Pro mini as its flying brain. Shane is a Ph.D Student at Massachusetts Institute of Technology. On being asked about the Project, he replied:

I heard about Arduino some time in 2007/2008 and have used it for a few projects since then. I built the quadrotor for fun / hobby (not related to research). I wanted to build my own (quadrotor) from scratch because I could integrate all the parts onto a single circuit board, and because I like designing the control system myself.

(more…)

Touché with Arduino

Friday, June 1st, 2012

Touché is a capacitive-sensing technology, developed by Walt Disney Research, which aims at providing touch and gesture sensitivity to a great variety of objects. From this research paper:

The technology is  scalable, i.e., the same sensor is equally effective for a pencil, a doorknob, a mobile phone or a table. Gesture recognition also scales with objects: a Touché enhanced doorknob can capture the configuration of fingers touching it, while a table can track the posture of the entire user.
The technique behind Touché is known as Swept Frequency Capacitive Sensing (SFCS): at a glance, by monitoring the capacitive response of an object over a specific range of frequencies (instead of a single one), it is possible to infer about its interaction with the outside world.
In his blog, Dzl describes his personal approach toward the development of a system capable to emulate Touché’s behavior with Arduino. Currently, the project is still in a early stage, but improvements and further developments are expected soon.
More information can be found here.
[Via: Geekphysical blog and Dzl's blog]
UPDATE 2012-06-02: you can now try out how to make it yourself following this instructable.

 

How to turn a pencil drawing into a capacitative sensor for Arduino

Wednesday, May 30th, 2012

Nice tutorial about how to make pencil drawings reactive to touch using just pencil, some resistors, paperclips, wire, Arduino and tape.

Portable and cloud-based heart rate tracker

Wednesday, May 23rd, 2012

In his blog, Charalampos describes his experience with SeeedStudio’s Grove Ear-clip Heart Rate sensor and Cosm (former Pachube) cloud service. The employed sensor is quite cheap and can detect heart pulses from the ear lobe, by measuring the infra-red light reflected by the tissue and by checking for intensity variations.

By connecting this sensor with an ADK board and, in turn, with an Android smartphone, Charalampos implemented a portable heart-rate tracker, which is used to send the recorded data to Cosm cloud service.

For more information and sample code, see here.

[Via: Building Internet of Things]

 

 

Indoor air quality mapping

Wednesday, May 23rd, 2012

PLOTS guys propose an interesting way to measure the quality of the air for indoor environments, by hacking a second-hand Roomba robot (an autonomous vacuum cleaner).

These robots are programmed to randomly move inside rooms to clean up the floor, so by adding a simple air quality sensor on top of one of them, it is possible to easily implement a sort of “random walker” that will sense for us the presence of gases (volatile organic chemicals, VOCs), such as NH3, alcohol, CO2 and so forth.

To keep track of the air quality measurements, the authors equipped the so hacked Roomba with an RGB led, whose color can be changed according to the air sample. By taking a long exposure picture of the room where the robot was roaming in, they could determine the areas where a high concentration of VOCs was present.

The complete description of the project can be found on the PLOTS’ website, while here you may find a short video about it:

PLOTS guys are also working on a different approach to air sensing, which does not make use of a Roomba robot but uses a hamster ball, instead. Further details can be found here.

[Via: Public Laboratory for Open Technology and Science]

Arduino-based theremin

Monday, May 21st, 2012

Theremin is one of the most exiting musical instruments ever made, mainly because of its “quite odd” playing method. Infact, its working principle is based on near-filed coupling between the hands of the theremin player and two metal antennas, used to determine the pitch of a variable-frequency oscillator and to adjust the volume of the output signal, respectively.
Several theremin implementation are possible, such as the “original” analog one (based on the mixing of two sine waves originated by a fixed-frequency oscillator and a variable-frequency one) and those based on digital techniques.
LabIII guys implemented a nice and simple Arduino theremin module, based on a TTL LC-type oscillator, usable not only to play electronic music, but also as a generic sensing-device, for example to control motors and/or to work with Processing, Max etc.
The detailed description of the project, together with schematics and source code, can be found here.

 

[Via: elektor.it]