Archive for the ‘sensors’ Category

An open robot shield for Arduino

Monday, August 6th, 2012

Open Electronics‘ staff were looking for a common and standard hardware platform usable on different robots they were working on. Their goal was to find a single platform that had to provide power supply to the microcontroller, it had to provide stabilized voltage for the servos, and, finally, it had to be equipped with an obstacle detector and with an IR receiver.

Having chosen Arduino as the target core board, they developed an ad-hoc shield meeting all these requirements, whose detailed description can be found here, together with the BOM and a lot of source code.

[Via: Open Electronics]

Wearable Fabric on the Arduino Store

Tuesday, July 24th, 2012

We are happy to announce the first wearable kit on the Arduino Store . This kit has been made by Plug’n’Wear specifically for us. All fabrics in this kit are produced in Italy, and strongly related to a textile family business. If you want to get deeper into the story of this product have a look at Riccardo Marchesi presentation (still in Italian, soon to be traslated!) at World Wide Rome 2012.

Read over for Kit’s features

(more…)

Schools projects with Arduino: Flow Meter

Tuesday, July 10th, 2012

The

Loccioni Group, is an italian company that sponsors every year a project internship entitled “Classe Virtuale”, dedicated to young students coming from local technical schools.

This year, “Classe Virtuale 2012″ has been composed by 27 students with different backgrounds, selected among 120 candidates. After a stating training period, during the three-weeks internship the team worked on a very nice Arduino-based project: Flow Meter.

Here you may find a brief interview we had with Daniele Caschera, one of the components of “Classe Virtuale 2012″, about Flow Meter and on how Arduino helped in its design.

(more…)

Space experiments for everyone: the ArduSat project

Tuesday, June 19th, 2012

ArduSat, which stands for “Arduino satellite”, is a recently kickstarted project that aims at developing an open platform usable to emulate space scientists:

Once launched, the ArduSat will be the first open platform allowing the general public to design and run their own space-based applications, games and experiments, steer the onboard cameras to take pictures on-demand, and even broadcast personalized messages back to Earth.

ArduSat will be equipped with several sensors (such as cameras, gyros, accelerometers, GPS and more) packed inside a small cube (the side will be approximately 10 cm long) that can be accessed through a set of Arduinos.

Once in orbit, the ArduSat will be accessible from the ground to flash the required firmware for the experiments and for getting back all the collected information. People interested in performing space experiments will have access to a ground replica of ArduSat explotable to test and debug their code before the actual deployment.

The project is very ambitious, and it is expected that such an open accessible space platform will have a considerable impact on how simple space experiments will be carried out in the forthcoming years, in the case of fundraising success.

You may find the Kickstarter page of the project here.

[Via: Hack A Day and Kickstarter]

Quick tutorial: current sensing for DC motors

Friday, June 15th, 2012

On her blog, Dustyn Roberts presents her own experience on current sensing for controlling DC electric motors with an Arduino board and an Arduino Motor Shield. This shield, based on a L298 H-bridge, provides two current sensing pins to the user, which can be used to measure the instantaneous current absorpion by each H-bridge. After some trials, Dustyn managed to have a quite clear picture of the absorption behavior of the DC motor:

Sample code and updates can be found on Dustyn’s blog.

[Via: Dustyn's blog]

Some advances in aerial vehicles: bat-inspired smart wings

Wednesday, June 6th, 2012

Researchers from Centro de Automática y Robótica (Universidad Politécnica de Madrid) and from Brown University carried out a very deep research about the specific behavior of bat flight, whose ultimate goal is to replicate the capabilities of bat’s wings by means of an ad-hoc designed micro aerial vehicle (MAV).

From the home page of the project:

[...] this research is oriented towards the development of a biological inspired bat robot platform, that allows to reproduce the amazing maneuverability of these flying mammals. The highly maneuverability is achieved by reproducing the flapping and morphing capabilities of their wing-skeleton structure. This structure is composed by several joints and a membrane that generates the required lift forces to fly.

To mimmic the muscular system that moves the joints of the wing-bones, Shape Memory Alloys (SMA) NiTi wires are used as artificial-muscles. Several challenges in controlling this SMA-based actuation system are regarded in this research.

(more…)

Arduino based Quadrotor on a PCB

Wednesday, June 6th, 2012

There are many Quadrotor Projects out there. But, they require a hobbyist to deal with the Frame Designing (Mechanical), a bit of Microcontroller knowledge as well as dealing with the Motor Control (Power Electronics). You may purchase a commercial Radio and a readymade Kit for flying. But, to Do-It-Yourself, is an achievement in itself.

4pcb Quad

Here is a picture of a Quadrotor designed by Shane Colton using Arduino Pro mini as its flying brain. Shane is a Ph.D Student at Massachusetts Institute of Technology. On being asked about the Project, he replied:

I heard about Arduino some time in 2007/2008 and have used it for a few projects since then. I built the quadrotor for fun / hobby (not related to research). I wanted to build my own (quadrotor) from scratch because I could integrate all the parts onto a single circuit board, and because I like designing the control system myself.

(more…)

Touché with Arduino

Friday, June 1st, 2012

Touché is a capacitive-sensing technology, developed by Walt Disney Research, which aims at providing touch and gesture sensitivity to a great variety of objects. From this research paper:

The technology is  scalable, i.e., the same sensor is equally effective for a pencil, a doorknob, a mobile phone or a table. Gesture recognition also scales with objects: a Touché enhanced doorknob can capture the configuration of fingers touching it, while a table can track the posture of the entire user.
The technique behind Touché is known as Swept Frequency Capacitive Sensing (SFCS): at a glance, by monitoring the capacitive response of an object over a specific range of frequencies (instead of a single one), it is possible to infer about its interaction with the outside world.
In his blog, Dzl describes his personal approach toward the development of a system capable to emulate Touché’s behavior with Arduino. Currently, the project is still in a early stage, but improvements and further developments are expected soon.
More information can be found here.
[Via: Geekphysical blog and Dzl's blog]
UPDATE 2012-06-02: you can now try out how to make it yourself following this instructable.

 

How to turn a pencil drawing into a capacitative sensor for Arduino

Wednesday, May 30th, 2012

Nice tutorial about how to make pencil drawings reactive to touch using just pencil, some resistors, paperclips, wire, Arduino and tape.

Portable and cloud-based heart rate tracker

Wednesday, May 23rd, 2012

In his blog, Charalampos describes his experience with SeeedStudio’s Grove Ear-clip Heart Rate sensor and Cosm (former Pachube) cloud service. The employed sensor is quite cheap and can detect heart pulses from the ear lobe, by measuring the infra-red light reflected by the tissue and by checking for intensity variations.

By connecting this sensor with an ADK board and, in turn, with an Android smartphone, Charalampos implemented a portable heart-rate tracker, which is used to send the recorded data to Cosm cloud service.

For more information and sample code, see here.

[Via: Building Internet of Things]